

Norwegian Meteorological Institute met.no

> 27 year simulations using ROMS and MIPOM: Validation and Comparison

Jon Albretsen and Lars Petter Røed¹

¹Also affiliated with Department of Geosciences, University of Oslo, Norway

Outline

- Background and motivation
- Models and observations
- Results
- Conclusions

Background and Motivation

- ROMS to replace MIPOM
- Earlier results (CONMAN) indicates that ROMS is superior to MIPOM LaCasce et al. (2007)

Background and Motivation

- MIPOM
 - old code,
 - yesterdays numerics
 - in operation since early 1990s
- ROMS
 - Modern code
 - More sophisticated numerics, e.g., better conservation properties
 - Developed for coastal shelf seas

Simulations

- *Four* hindcasts each 27 years long
- Motivation: To ensure that the model is well identified
- Area covered:
 - North Sea/Skagerrak
- Grids employed:
 - Eddy-permitting: 4km
 - Eddy-resolving: 1.5km

Norwegian Meteorological Institute met.no

Simulations

- 27 year period:
 - 1981-2007 (+ 1980 spin-up)
- 4 simulations:
 - 2 x MIPOM : 4 km and 1.5 km
 - 2 x ROMS : 4 km and 1.5 km
- Atmospheric forcing:
 - ERA40 + ECMWF operational analysis 2002-2007
- Tidal forcing:
 - 8 major tidal components
 - Forced at open boundaries

Simulations

- Forcing at open boundaries:
 - 4 km: SODA reanalysis + 2005-2007 climatology
 - 1.5 km: Nested into 4 km
- Rivers:
 - Climatology
- Baltic outflow
 - S=12 psu
- No data-assimilation

Model facts

ltem	MIPOM		ROMS	
Resolution	4 km	1.5 km	4 km	1.5 km
# of vertical levels	26	21	32	32
Long (internal) time step	150 s	60 s	120 s	90 s
Ratio of internal to external time step	30	40	30	30
Horizontal dissipation	Smagorinsky		No explicit diffusion	
Vertical mixing	Mellor-Yamada 2.5 level		GLS mixing scheme	
Horizontal advection scheme	2nd order centered		3rd order upwind	
Surface fluxes	MI-IM		Standard ROMS bulk fluxes	

Observations for validation

- Institute of Marine
 Research:
 - 1. Current measurements (one location, 160 day period)
 - 2. Monthly data from the Hirtshals - Torungen section (12 stations, all years)
- ICES database
 - About 250.000 S and T measurements irregularly distributed in time and space

Comparison with earlier results

2004-2006 (3 yr) average speed at 50 m

LaCasce et al. (2007): "The ROMS velocities are more energetic and compare more favorably with in situ observations, as do the ROMS-derived means"

Currents off western Norway

27 yr average speed at 50 m (m/s)

Surface currents Skagerrak

27 average (m/s)

Surface currents Skagerrak

27 average (m/s)

ROMS 1.5km

MIPOM 1.5km

Validation of currents

Location: 58.37N, 8.51E

Validation: Directional PDFs

Validation: Directional PDFs

Validation: Speed PDFs

Validation: Speed PDFs

In meteorological Institute met.no

Validation of currents

Standard deviation

Salinity bias (mod - ICES obs)

27 average; upper 20 m

Salinity bias (mod - ICES obs)

27 average; 50-600 m

Salinity bias (mod - IMR obs)

Temperature bias (mod - ICES obs)

1981-2007 average; upper 20 m

Temperature bias (mod - ICES obs)

1981-2007 average; 50-600 m

Temperature bias (mod - IMR obs)

Temperature bias (mod - IMR obs)

SSS off southern Norway

SST off southern Norway

T-S-diagram

Mean kinetic energy

1981-2007 average (J/m2)

Mean kinetic energy

1981-2007 average (J/m2)

Eddy kinetic energy

1981-2007 average (J/m2)

Norwegian Meteorological Institute met.no

Ø

 C_{ME}

 C_M^{Φ}

K_M

 C_E^{Φ}

K_E

Eddy kinetic energy MIPOM 1.5km ROMS 1.5km 2500 300/ 000 1500 2000-1000-000

Conclusions:

- Current structure north of Tampen confirms the CONMAN results
- MIPOM 1.5 km "best"
 - Constitutes a huge improvement in Skagerrak, in particular currents
- ROMS needs improvements:
 - Major biases in heat and salinity in Skagerrak

Conclusions MIPOM:

- Remarkable improvement in currents when increasing the resolution. Topography related ?
 Model depth 233 ->163 m; real depth is 120m
- Scores well regarding currents along the Norwegian coast in Skagerrak:
 - Particularly the 1.5km model below the mixed layer
- Reproduces temperatures well (a small warm bias in the mixed layer)
- Decreasing salinity trend (-0,35 psu/decade)
- Positive salinity bias in the mixed layer

Conclusions ROMS:

- Surface currents validates well, but too speedy at depths
 - Slightly too energetic in the NCC below the mixed layer
- More energetic than MIPOM, particularly EKE
- Increasing salinity trend (+0,35 psu/decade)
- Too warm at all depths
 - A 1°C warm-bias in SST in Skagerrak
- Too salty in the mixed layer
 Slightly saltier than MIPOM
- 30% more water, 30% more salt and 50% more heat is advected in/out of Skagerrak
- Missing West Jutland current?
 - Very weak compared to MIPOM.

