Current TOPAZ developments

L. Bertino, F. Counillon Mohn-Sverdrup Center/NERSC

Opnet workshop, Geilo, 27th May 2009

Collaborative Projects overview

- MyOcean WP5 (Arctic MFC) (2009-2012) ~25 MNOK
 - Large scale ocean sea-ice forecasting/reanalysis service
 - NERSC, met.no, IMR, NIERSC
- eVITA-EnKF (2007-2011) 20 MNOK
 - Data assimilation developments, multidisciplinary
 - NERSC, met.no, Storm, NHH, StatoilHydro, Ecole des Mines
- PRECOC (2005-2008) 2 MNOK
 - Coastal data assimilation, methodology, OSSE
 - NERSC, NIVA, Ifremer, Actimar, Ecole des Mines
- I-NORD (2009-2013?) ? MNOK
 - Observations and Forecasting service (?)
 - Sintef, met.no, IMR, NIVA, NERSC, NPI (?)
- FFI Gliders (2009) 0.25 MNOK
 - OSSE Assimilation of gliders in TOPAZ
 - Met.no, NERSC

NERSC

Motivation

- Ocean modelling is undergoing a transition
 - From research to operational services
- Ocean models are based on dynamical principles:
 - Are applicable to the whole world oceans
 - From surface to bottom, where observations are sparse
 - From open ocean to coastal seas
- With data assimilation methods
 - Improves the timing of ocean processes
 - In short-term forecast mode (Ocean weather forecast)
 - In reanalysis mode

A new capability available to the public at large

The TOPAZ model system

- TOPAZ3: Atlantic and Arctic
 - HYCOM + EVP sea-ice model
 - 11- 16 km horizontal resolution
 - 22 hybrid layers
- EnKF
 - 100 members
- Observations
 - Sea Level Anomalies (CLS)
 - Sea Surface Temperatures (NOAA)
 - Sea Ice Concentr. (AMSR, NSIDC)
 - Sea ice drift (CERSAT)
 - Argo T/S profiles (Coriolis)
- Runs weekly, 10 days forecasts
 - ECMWF forcing
- NERSC http://topaz.nersc.no/thredds

http://thredds.met.no (MERSEA...)

TOPAZ System overview

The HYCOM model upgrade

Validation of TOPAZ Coordination with TOPAZ@met.no Data Assimilation

The HYCOM model

- 3D numerical ocean model
 - Hybrid Coordinate Ocean model, HYCOM (U. Miami)
 - US Navy global forecasts
- Hybrid coordinate
 - Isopycnal in the interior
 - Z-coordinate at the surface
 - Terrain following (sigma)
- Nesting capability
- Coupled
 - Sea-ice model

NERSC Ecosystem models

Mohn-Sverdrup Center Global Ocean Studies - Operational Oceanography

HYCOM upgrade (v2.2.12)

- Choice of different mixing schemes
 - KPP, MY2.5, Canuto (GISS), ...
- Hybrid grid generator:
 - 3(4) different vertical interpolation methods (PCM, PLM, PPM, WENO)
- Improved treatment of rivers
 - Mass fluxes
- Bottom boundary layer (inverse KPP)
 - Shallow seas, Gibraltar Strait, Red Sea outflow.
- More stable in shallow waters (Morel et al. 2008)

Other upgrades

TESTED

- Vertical resolution
 - 28 layers instead of 22
 - Thicker z-levels for deep mixed layers
- Sea.ice model
 - Advection scheme (WENO)
 - Snow distribution
 - Tuning of P* (ice strength)
- River fluxes from hydrologic model (TRIP), Oki and Sud (1998)
- Bering Strait fluxes from Pacific

ONGOING

- Forcing fields: ERA-Interim (to be tested)
- Assimilation of ocean colour in HYCOM-NORWECOM
- MIZ sea-ice rheology (TOTAL)

PLANNED

- Sea-level altimeters tracks
- Ferrybox data (Svalbard)
- Gliders (FFI-met.no)
- Rio05 MDT
- HR SST (Ostia/Odyssea)
- New satellites
 - GOCE, SMOS, Cryc Solar Sverdrup Center

L4 SST

TOPAZ4

Effect of the upgrade Weekly SST in Dec. 1999, free run

AVHRR

L4 SST

River forcing - TRIP

Rivers in Asia on TRIP by 0.5°x0.5° mesh

iter graphy

River run-offs: diagnosed from ECMWF data

ISLSCP2 data-base in combination with ERA-interim run off

NERSC

Sea-Ice model developments

- New advection scheme (WENO)
 - Reduces numerical noise in Ice fields
 - Leads to more ice in average.
- Plan for MyOcean@met.no: CICE model (Los Alamos)
 - HYCOM 2.2 includes coupling to ESMF (and CICE)
- Data-assimilation in the multi-category ice model:
 - Many more prognostic variables:
 - (fice, hice, temp_profile*nb_ice_layers)*n_categories + albedo, qbrine

Sensitivity to Sea ice strength (p*)

p* has high uncertainties, depends on the model resolution.

Test: Free run

- little difference in winter
- ice holds longer in summer with larger Pstar

Snow module

Leads to more ice

•Two effects:

- Snow increases the albedo
- Isolates the ice

Probabilistic snow distribution:

TOPAZ System overview

The HYCOM model

Validation Coordination with TOPAZ@met.no

Data Assimilation

Vertical resolution thicker z-levels

Thin z-levels

Thick z-levels

Global Ocean Studies - Operational Oceanography

TOPAZ4 Validation *"North Atlantic"*

TOPAZ4-TOPAZ3 *Surface Salinity, July*

- Improved transport of Atlantic Water
- Freshwater flux in Bering Strait (1.2 Sv)
- Corrected the saline bias in the Arctic,
 - But: Slight fresh bias
 - Too saline in the Labrador Sea

Solution:

• reduce the flux in Bering Strait (0.8 Sv)

GDEM July

TOPAZ Validation *"Fram Straits"*

TOPAZ4-TOPAZ3 *Transport estimates*

	TOPAZ3	TOPAZ4	Observed value	Positive is
Fram Straits (Net)	0.69 Sv	2.0 Sv	~2 Sv	Southwards
Bear Island (Net)	0.85 Sv	2.19 Sv	2.2-2.5 Sv	Eastwards
Nordic Sea (Northwards) (Iceland-Færoe-Shetland- Scotland)	7.68 Sv	7.76 Sv	7-8 Sv	Northwards

Improvement of the "critically important fluxes"

TOPAZ System overview

The HYCOM model

Validation

Coordination with TOPAZ@met.no

Data Assimilation

Things to share

- Visualisation
 - Comparisons TOPAZ@NERSC and <u>TOPAZ@met.no</u>
 - THREDDS/OPeNDAP clients
- Performance statistics
- Code:
 - concurrent upgrades, documentation
- User:

51

ECMWF operational wave forecast

Visualization

http://topaz.nersc.no/topazVisual

Image: Control of the second secon	Image: Top: Top: <th>📫 Firefox File Edit</th> <th>View History Bookmarks</th> <th>Tools Window Help</th> <th></th> <th></th> <th>• * ◇</th> <th>◄ (Charged) Tue 5:42 PM Q</th>	📫 Firefox File Edit	View History Bookmarks	Tools Window Help			• * ◇	◄ (Charged) Tue 5:42 PM Q
Image: A constrained and the second secon	• • • • • • • • • • • • • • •	00			Topaz NetCDF vit	ualization at Nansen		
Next Head Concernence (a) in the programme subsystem is a structure in the function of the fun			http://topaz.nersc.no/te	opazVisual/matlab_static_image.php?	action=sectionsFunction&file_prefi	x=Section07&match_date=20081001&variable_n	ame=temperature 🏠 🔻) • 💽 🕻 pages	blanches Q
Image: Control of the Control of th		Most Visited - Congress - TO	OPAZ - Links - Pratique - Voyag	ge ∓ Perso ₹ eVITA ₹				
	MATLAB STATIC INACES Celetification for a particular Topic NACEP data category, and clik on the corresponding plot button. Mattab Static Topic NACEP data category, and clik on the corresponding plot button. Mattab Static Topic NACEP data category, and clik on the corresponding plot button. Mattab Static Topic NACEP data category, and clik on the corresponding plot button. Nace Concentration of a particular Topic NacePart data category, and clik on the corresponding plot button. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a particular Topic NacePart data category. Nace Concentration of a	Index of ftp://ftp.nersc.no/p	oub 😧 🚺 🐼 Find programme webp	oages - T 🛞 📄 Topaz NetCDF vi	iualization at N 🛞 🙀	Forside - FRIPRO 😵 🐼 Prosjekta	rkiv - FRIPRO	
Here the update of the second		Global Ocean Studies - Operationa	l Oceanography					
Active Casa2 (Recentaria) Ac				(Select the options for a	MATLAB STA particular Topaz NetCDF dat	ATIC IMAGES a category, and click on the corresponding	plot button)	
bade temperature is badd temperature is badd temperature is badd temperature is badd t		North-Atlantic (Rurvilinear-Grid)	Arctic-Class1 (Curvilinear-Grid)	Arctic-Class1 (Nordic-sea)	Arctic-Class2 (Moorings)	Arctic-Class2 (Sections)	Arctic-Class3 (Transport)	Arctic-Class3 (IceTransport)
		Variable: temperature 🛟	Variable: temperature 🛟	Variable: temperature 🛟	Profile name :	Section name: FRAM_STRAIT (Sec01)		Testman and testing a
Destrivity MUDD: Destrivity MUDD: Watabil: Destrivity MUDD: Open of the second		Depth: 0 (sea-surface) 🛟	Depth: 0 (sea-surface)	Depth: 0 (sea-surface) 💠	profile01	Variable: temperature 🛟	FRAM_STRAIT(Sec01)	FRAM_STRAIT(Sec01)
per per per per per per per per		Date(YYYYMMDD):	Date(YYYYMMDD):	Date(YYYYMMDD):	Variable: temperature	Date(YYYYMMDD):		
$\begin{array}{ c $								
		plot	piot	plot	plot	plot	plot	plot
	5 10 15 20 25 30 35 40 45			-50 -100 -150 -200 -200 -250 -300 -350 -350 -400 -450			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

OPeNDAP clients: DAPPER

41

$\Theta \Theta \Theta$	Vertical Salinity and temperature profiles from TOPAZ		
	ittp://topaz.nersc.no/Knut/Test/profiles.php	☆ ▼) ~ (G▼(screenshot mac	٩
Most Visited - Radios - Blogs - Kultur -	Bands - Pratique - Copains - Bank -		
📄 Vertical Salinity and temperatur 😟 🥂	Taking Screenshots in Mac OS 📀		-

Vertical temperature and salinity profiles from TOPAZ

Profiles are based on model data from the <u>TOPAZ</u> model system and from in situ profiles of salinity and temperature acquired from <u>Coriolis</u>. Click on the place mark in the map to get images of the profiles. Map is powered by <u>Google Maps</u>.

TOPAZ3_20080618
 TOPAZ3_20080625
 TOPAZ3_20080702
 TOPAZ3_20080709
 TOPAZ3_20080716
 TOPAZ3_20080723
 TOPAZ3_20080730
 TOPAZ3_20080806
 TOPAZ3_20080813
 TOPAZ3_20080820
 TOPAZ3_20080827

TODA 72 20080002

Online comparison to Argo profiles

Subversion:

HYCOM code sharing

Wave modelling at ECMWF (J. Bidlot)

- TOPAZ surface currents in ECMWF wave model
 - Hs: Small improvement of scatter index
 - Larger improvement for peak periods
 - But biases are slightly more negative
- ECMWF has decided to use TOPAZ for operations
- One output script to pass to
 NERSCHELTO

Figure 6: Wave height and peak period time series at buoy 42003 (East Gulf) for December 2007. The solid red line (f05j) is the run with currents and the dash blue line (ezy4) is the reference experiment.

TOPAZ System overview

The HYCOM model Validation Coordination with TOPAZ@met.no Data Assimilation

Assimilation of Ferrybox data PRECOC project FNS

35

Assimilation of Ocean Color in HYCOM-NORWECOM

Data:

Satellite Ocean Color (SeaWIFS) Coupled Model:

HYCOM-NORWECOM

(7 compartments)

Problems:

- Coupled 3-dimensional physical-biological model.
- High-dimension.
- Non-Gaussian variables.

Perspectives:

- Environment monitoring.
- Fisheries.
- Methodological developments for future coastal HR systems.

Net primary productivity (mgC/m3 day)

Gaussian anamorphosis with the EnKF

Anamorphosis: prior transformation of the variables in a Gaussian space (*Bertino et al. 2003*) Twin experiments (surface chlorophyll-a synthetic observations)

Surface CHLa RMS error

Simon & Bertino (OSD, 2009)

Conclusion

- First runs of TOPAZ4 showed some improvements (ice, inflow of Atlantic Water, front sharpness) but can take some more tuning
- A 20 year reanalysis of TOPAZ4 is underway, with (EnKF) assimilation of satellite and in-situ data (INTAS database)
- Assimilation of Ocean Color = encouraging, tested in a realistic application.
- Collaborative developments of TOPAZ:
 - Avoid code divergence with Subversion repository
 - Re-organize the code and auxiliaries with HYCOM2.2
- Similar systems are getting set up for China, India, South Africa

Circlets: eddy detection

European project 2009-2012 Lead by Mercator Ocean

Market Segmentation

MyOcean will "provide the common denominator data for all users in the marine sector, in other words the information for existing & new downstream services."

Area 1 « MARINE SAFETY » (marine operations, oil spill combat, ship routing, defense, search & rescue, ...) Area 3 « MARINE AND COASTAL ENVIRONMENT » (water quality, pollution, coastal activities, ...)

Area 2 « MARINE RESOURCES » (fish stock management, ICES, FAO, ...) Area 4 « CLIMATE & SEASONAL FORECASTING » (climate monitoring, ice, seasonal forecasting, ..)

The Production Units

System organization 12 production units

The MyOcean value 6 European Seas + Global Ocean

- 1. Global
- 2. Arctic
- 3. Baltic
- 4. NWS
- 5. IBI
- 6. Med Sea
- 7. Black Sea

Scope of responsibility

