

Meteorologisk institutt met.no

Aerosols in the EMEP MSC-W model

By Svetlana Tsyro

EMEP/MSC-W model training course,

24-26 April 2013

PM history in the EMEP

englan Institute for AM Research D Box 100. N-2027 Kjellor, Norwey PM expert workshop (2000): * PPM10 & PM2.5 health effect * Unclear which PM characteristics are responsible ... mass, number, surface area...

Figure 3.2: Annual mean concentrations and relative contributions to the total PM concentrations from: (a) primary PM₁₆ (b) secondary inorganic aerosals, and (c) biogenic secondary organic aerosois.

Measurements PM

(Pakkanen et al., 1999)

1998 yearly aver. PM_{10} conc. = 3.5 μ g/m³

Apr-96/Jun-97 aver. PM_{2.5} conc. = 7.8 μ_ξ Meteorologisk Institutt met.no

Aerosols and their sources....

Anthropogenic

SIA - Secondary **Inorganic Aerosols PPM** – Primary **Particulate Matter EC** – Elemental Carbon **POM** – Primary Organic Matter (Aerosol) ASOA/BSOA -Anthropogenic/Biogenic **Secondary Aerosols**

Aerosols and their sources....

Aerosol formation

Fine	Coarse	Formation	Modules
SO 4 ²⁻	-	SO ₂ gas/aqueous oxidation (pH)	CM_Reactions2.inc
NO ₃ -	NO ₃ -	Equilibrium (NH4NO3) HNO3 -> coarse NO3	MARS_ml.f90 CM_Reactions2.inc
NH ₄ +	NH ₄ +	(NH4)xSO4 + Equilibrium (NH4NO3)	MARS_ml.F90
EC	EC	PPM fraction (IIASA) EC ageing, Inert	emissplit.specials.pm25 emissplit.defaults.pmco ChemFunctions_ml.f90
POM	POM	PPM fraction (IIASA); Inert	emissplit.specials.pm25 emissplit.defaults.pmco
ASOA	-	VBS approach - DAVE	My_SOA_ml.f90
BSOA	-	VBS approach - DAVE	My_SOA_ml.f90
Sea salt	Sea salt	Source function (u10, Twater) Tsyro et al, ACP, 2011	SeaSalt_ml.f90
Anth. dust	Anth. Dust	Remaining PPM (IIASA) + Road dust	Emissions_ml.f90
Min. Dust	Min. Dust	Windblown (Martecorena et al. 1997) Saharan dust as bound. condition	DustProd_ml.f90 CTM-UiO (monthly 2000)
PM water	-	Diagnostic (SIA)	MARS_ml.f90

Dry Deposition

Modules	Action	Details
DryDep_ml.f90	DryDep for each landuse (LU)	
Aero_Vds_ml.f90	DryDep velocities for a set of aerosol diameters and LUs	real, dimension (NSIZE) :: & diam = (/ 0.33e-6, 3.0e-6, 4.0e-6, 4.5e-6 ,22e-6 /)
My_Aerosols_ml.f90	Number of diameters for Vd	NSIZE=5
Wesely_ml.f90	Mapping DryDep velocities (PMfS, PMfN, PMc, SSc, DUc) to diameters in Aero_Vds_ml	, dimension (CDDEP_PMfS: CDDEP_POLLd), parameter:: & AERO_SIZE = (/ 1, 1, 2, 3, 4, 5/)
CM_DryDep.f90	Mapping species & dry deposition velocities	

DryDep_ml.f90

 $V_{\rm d}(z) = \frac{v_{\rm S}}{1 - e^{-r(z)v_{\rm S}}} \qquad \text{Venkratram \& Pleaim} \tag{70}$

where v_s is settling velocity, $V_d(z)$ is the deposition velocity at height z, and r(z) is the sum of the aerodynamic resistance and inverse V_{ds} .

Vds - quasi-laminar layer resistance for differenf landuse types, stability dependent (Aero_Vds_ml.f90)

Dry Deposition

Aero_Vds_ml.f90

real, public, parameter, dimension(NSIZE) :: & diam = (/ 0.33e-6, 3.0e-6, 4.0e-6, 4.5e-6, 22e-6 /),

Wesely_ml.f90

integer, public, parameter :: NDRYDEP_AER = 6 ! aerosols

integer, public, parameter :: NDRYDEP_CALC = NDRYDEP_GASES + NDRYDEP_AER

integer, public, parameter :: CDDEP_PMfS= 12, CDDEP_PMfN= 13, CDDEP_PMc = 14, & CDDEP_SSc = 15, CDDEP_DUc = 16, CDDEP_POLLd= 17

```
integer, dimension(CDDEP_PMfS : CDDEP_POLLd), public, parameter :: &
 AERO_SIZE = (/ 1, 1, 2, 3, 4, 5/) !! Corresponds «diam» in Aero_Vds
 !1=fine,2=coarse,3=coarse sea salt, 4=dust, 5 = pollen
```

CM_DryDep.f90

*) type(depmap), public, dimension(NDRYDEP_ADV), parameter	•	&
DDepMap= (/ depmap(IXADV_SO4, CDDEP_PMfS,	-1)	&
, depmap(IXADV_NO3_f, CDDEP_PMfN,	-1)	&
, depmap(IXADV_NO3_c, CDDEP_PMc,	-1)	&
, depmap(IXADV_SeaSalt_c, CDDEP_ <mark>SSc</mark> ,	-1)	&
, depmap(IXADV_Dust_sah_c, CDDEP_DUc,	-1)	Meteorologisk Institutt met.no

Wet Deposition

In cloud

$$S_{\rm in} = -\chi \frac{W_{\rm in}P}{h_{\rm s} \rho_{\rm w}}$$

Below cloud

 $S_{\rm sub}^{\rm aer} = -\chi \frac{A P}{V_{\rm dr}} \bar{E}$

Win – scavenging ratio (reflects solubility)

where V_{dr} is the the raindrop fall speed ($V_{dr} = 5 \text{ m s}^{-1}$), $A = 5.2 \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-1}$ is the empirical coefficient (a Marshall-Palmer size distribution is assumed for rain drops), and \bar{E} is the size-dependent collection efficiency of aerosols by the raindrops (Table S20). The collection efficiency is size de-

Win E

Modules	Action	Details
Aqueous_n_WetDep_ml.f90	Sets: in-cloud, sub-cloud scavenging rates (accounting for solubility, size)	WetDep(CWDEP_SO4)= WScav(1.0, EFF25)WetDep(CWDEP_ECfn)= WScav(0.05, EFF25)WetDep(CWDEP_SSf)= WScav(1.6, EFF25)WetDep(CWDEP_SSc)= WScav(1.6, EFFCO)WetDep(CWDEP_PMf)= WScav(1.0, EFF25)WetDep(CWDEP_PMf)= WScav(1.0, EFF25)WetDep(CWDEP_PMc)= WScav(1.0, EFFCO)

Wet Deposition

Modules	Action	Det	ails					
Aqueous_n_WetDep_ml.f90	Sets: in-cloud, sub-cloud scavenging rates (accounting for solubility, size)	WetDep(CWDEP_SO4) WetDep(CWDEP_ECfn) WetDep(CWDEP_SSf) WetDep(CWDEP_SSc) WetDep(CWDEP_PMf) WetDep(CWDEP_PMc)	= WScav(1.0, EFF2 = WScav(0.05, EFF = WScav(1.6, EFF2 = WScav(1.6, EFF2 = WScav(1.0, EFF2 = WScav(1.0, EFF2	25) 25) 25) CO) 25) CO)				
include 'CM_WetDep.inc'	etDep.inc' Mapping species & Wet scavenging rates							
ty	_ADV), parameter	. ::						
	depmap(IX	ADV_SO4,	CWDEP_SO4, -1) &				
	CWDEP_PMf, -1) &						
	CWDEP_PMc, -1) &						
, depmap(IXADV_POM_f_WOOD, CWDEP_PMf,								
	, depmap(IX/	ADV_EC_f_FFUEL_new,	CWDEP_ECfn, -1) &				
	, depmap(IX	ADV_EC_f_FFUEL_age,	CWDEP_PMf, -1) &				
	, depmap(IX	ADV_EC_c_FFUEL,	CWDEP_PMc, -1) &				
	, depmap(IX	ADV_Dust_wb_f,	CWDEP_PMf, -1) &				
	, depmap(IX	ADV_Dust_wb_c,	CWDEP_PMc, -1) &				

$PM_{2.5} = PM_Fine + fracPM25 * coarse NO3$

$PM_{10} = PM_{2.5} + sum of Coarse aerosols$

CM_ChemGroups_ml.f90

integer, public, target, save, dimension (15) :: **PMFINE_GROUP** = & (/SO4,NO3 F,NH4 F,PART OM F,EC F WOOD NEW,EC F WOOD AGE,EC F FFUEL NEW, EC_F_FFUEL_AGE,REMPPM25,FFIRE_BC,FFIRE_REMPPM25,SEASALT_F,DUST_ROAD_F,DUST WB F, DUST SAH F /)

Also groups PM10, SIA, PPM25, PPMco, SS, DUST.....

Derived_ml.f90:

PM25 rh50 and PM10 rh50 - at Rh=50% and T= 20C for

comparison with observations (Tsyro, ACP, 2004)

PM25X rh50 = PM Fine +

fracPM25 * coarse (NO3+EC+POM)_{Meteorologisk Institutt met.no}

Some «advanced» stuff:

AOD and 3D extinction coefficients are included in the model, but those are still under development and testing ("False" as default) – to be updated soon

Using mass specific extinction efficiencies. Implicit accounting for aerosol effective radius for light extinction (cross-section weighted) and the effect of air humidity.

9

Encouragement for testing and development

- Mineral dust (windblown, agricultural)
 Coarse NO3 (on sea salt and dust),also coarse SO4
- NO3NO4 equilibrium models aren't doing too good works for warm seasons
- ✓ **Dry Deposition** (for different landuse, stability...)
- ✓ Wet Deposition
- ✓ Aerosol optics AOD, extinction
- ✓ Size-resolved aerosol, aerosol dynamics

That was about aerosols in the EMEP MSC-W model in a nutshell

Relevant publications:

D. Simpson, A. Benedictow, H. Berge, R. Bergström, L. D. Emberson, H. Fagerli, C. R. Flechard, G. D. Hayman, M. Gauss, J. E. Jonson, M. E. Jenkin, A. Nyíri, C. Richter, V. S. Semeena, S. Tsyro, J.-P. Tuovinen, Á. Valdebenito, and P. Wind (2012). The EMEP MSC-W chemical transport model – technical description. Atmos. Chem. Phys., 12, 7825-7865, 2012.

Tsyro, S, Aas, W., Soares, J., Sofiev, M., Berge, H., and G. Spindler (2011). Modelling of sea salt pollution over Europe: key uncertainties and comparison with observations. Atmos. Chem. Phys., 11, 10367-10388, 2011.

Tsyro, S. (2005). To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5?. Atmos. Chem.. Phys., 5, 602, 1-8, 2005.

W. Aas, S. Tsyro, E. Bieber, R. Bergström, D. Ceburnis, T. Ellermann, H. Fagerli, M. Frölich, R. Gehrig, U. Makkonen, E. Nemitz, R. Otjes, N. Perez, C. Perrino, A. S. H. Prévôt, J.-P. Putaud, D. Simpson, G. Spindler, M. Vana, and K. E. Yttri (2012). Lessons learnt from the first EMEP intensive measurement periods. Atmos. Chem. Phys., 12, 8073-8094, 2012.

Lots interesting stuff in EMEP Report 4/YYYY (http://emep.int)

From recent model evaluation

Corr

0.49

0.43

0.48

0.27

0.60

0.51

IOA

0.59

0.59

0.58

0.51

0.61

0.63

0

Bias

-25%

-22%

- 30%

- 35%

-18%

Rmse

6.30

8.53

7.20

6.88

6.10

-24% 12.27

PM10 ug/m3 Period CDays pc<30% pc<50% Ns Np YEARLY 36 36 (86%) (97%) -YEARDAY 36 11554 (62%) (84%) -JANFEB 35 35 (74%) (94%) -35 (94%) SPRING 35 (74%) -SUMMER 35 35 (83%) (94%) -36 36 AUTUMN (83%) (100%) -

PM25 ug/m	13									-	
Period	CDays	Ns	Np	pc<30%	pc<50%	Obs	Mod	Bias	Rmse	Corr	IOA
YEARLY	-	26	26	(88%)	(96%)	10.50	7.96	-24%	4.73	0.61	0.64
YEARDAY	-	26	7891	(64%)	(86%)	10.64	7.99	-25%	8.91	0.51	0.65
JANFEB	-	25	25	(72%)	(92%)	14.08	8.66	- 38%	9.74	0.75	0.57
SPRING	-	25	25	(84%)	(92%)	9.67	6.74	- 30%	5.43	0.42	0.55
SUMMER	-	26	26	(85%)	(96%)	9.55	7.55	-21%	3.95	0.39	0.62
AUTUMN	-	26	26	(81%)	(100%)	10.05	8.72	-13%	4.27	0.63	0.74
										-	

0bs

14.70

14.71

16.72

13.48

14.64

14.83

Mod

11.05

11.16

13.12

9.48

9.57

12.11

From recent model evaluation

0

Sulfate in Air ug/m3

6

											-	
	Period	CDavs	Ns	Np	nc<30%	nc<50%	0bs	Mod	Bias	Rmse	Corr	TOA
	YFARLY	-	59	59	(78%)	(98%)	1.67	1.28	-23%	0.75	0.68	0.76
	YFARDAY	-	59	19046	(46%)	(71%)	1.66	1.26	- 24%	1.49	0.55	0.72
	JANEER	-	58	58	(79%)	(95%)	1.79	1.47	-18%	0.93	0.69	0.78
	SPRING	-	59	59	(59%)	(92%)	1.77	1.12	-37%	0.92	0.57	0.60
	SUMMER	-	59	59	(56%)	(90%)	1 57	1 03	- 34%	0 79	0 72	0 72
	AUTUMN	-	54	54	(70%)	(94%)	1.53	1.34	-12%	0.76	0.70	0.82
											-	
Sulfate_in_Air,_sea_salt_incl. ug/m3												
	Period	CDays	Ns	Np	pc<30%	pc<50%	0bs	Mod	Bias	Rmse	Corr	IOA
	YEARLY	-	59	59	(90%)	(97%)	1.67	1.49	-11%	0.65	0.69	0.80
	YEARDAY	-	59	19046	(57%)	(79%)	1.66	1.47	-11%	1.44	0.56	0.73
	JANFEB	-	58	58	(84%)	(97%)	1.79	1.82	1%	0.82	0.74	0.82
	SPRING	-	59	59	(75%)	(98%)	1.77	1.29	-27%	0.79	0.62	0.66
	SUMMER	-	59	59	(78%)	(93%)	1.57	1.19	-24%	0.69	0.71	0.76
	AUTUMN	-	54	54	(85%)	(94%)	1.53	1.54	0%	0.72	0.70	0.83
											-	
	NO3in_/	Air ugN	I/m3								-	
	Period	CDavs	Ns	Nn	nc<30%	nc<50%	0hs	Mod	Rias	Rmse	Corr	τoa
	YEARLY	couys -	33	33	(73%)	(76%)	1 41	1 91	35%	0 88	0 72	0 80
	YEARDAY	-	33	10033	(34%)	(53%)	1 34	1 83	37%	2 14	0 59	0 75
	1ANFER	-	32	32	(63%)	(72%)	2 14	2 65	24%	1 31	0.55	0.82
	SPRING	-	33	33	(76%)	(79%)	1.58	1.78	13%	0.80	0.72	0.83
	SUMMER	-	33	33	(67%)	(82%)	0.91	1.03	13%	0.53	0.71	0.83
	AUTUMN	-	28	28	(50%)	(64%)	1.23	2.30	88%	1.57	0.66	0.68
											-	
											-	
	NH4+_in_/	Air ugN	I/m3								-	
	Period	CDays	Ns	Np	pc<30%	pc<50%	0bs	Mod	Bias	Rmse	Corr	IOA
	YEARLY	-	40	40	(88%)	(95%)	0.83	0.79	-4%	0.28	0.83	0.91
	YEARDAY	-	40	12427	(48%)	(71%)	0.81	0.76	-6%	0.79	0.68	0.81
	JANFEB	-	39	39	(79%)	(92%)	1.08	0.97	-10%	0.43	0.82	0.89
	SPRING	-	40	40	(80%)	(93%)	0.92	0.77	- 16%	0.35	0.79	0.85
	SUMMER	-	40	40	(73%)	(93%)	0.60	0.49	- 18%	0.28	0.76	0.85
	AUTUMN	-	35	35	(71%)	(94%)	0.73	0.89	22%	0.43	0.79	0.86

Meteorologisk Institutt met.no

From recent model evaluation

6

0

										-	
EC_in_PM1	.0 ugC/r	n3									
Period	CDays	Ns	Np	pc<30%	pc<50%	Obs	Mod	Bias	Rmse	Corr	IOA
YEARLY	-	14	14	(57%)	(86%)	0.65	0.36	-45%	0.51	0.60	0.61
YEARDAY	-	14	978	(34%)	(62%)	0.74	0.37	-51%	1.01	0.40	0.43
JANFEB	-	4	4	(25%)	(75%)	0.76	0.53	-31%	0.67	-0.05	0.39
SPRING	-	5	5	(20%)	(80%)	0.51	0.28	- 44%	0.49	0.20	0.44
SUMMER	-	5	5	(20%)	(80%)	0.37	0.26	- 29%	0.36	0.16	0.45
AUTUMN	-	14	14	(57%)	(93%)	0.64	0.38	-41%	0.48	0.58	0.62
EC_in_PM2	2.5 ugC,	/m3								-	
Period	CDays	Ns	Np	pc<30%	pc<50%	Obs	Mod	Bias	Rmse	Corr	IOA
YEARLY	-	4	.4	(25%)	(50%)	0.84	0.47	- 45%	0.74	0.35	0.52
YEARDAY	-	4	833	(34%)	(59%)	1.33	0.53	-60%	1.55	0.41	0.44
JANFEB	-	4	4	(25%)	(25%)	1.45	0.65	- 55%	1.53	0.39	0.46
SPRING	-	4	4	(50%)	(75%)	0.61	0.36	- 42%	0.55	0.19	0.51
SUMMER	-	4	4	(50%)	(75%)	0.49	0.36	-27%	0.43	0.03	0.47
AUTUMN	-	4	4	(25%)	(75%)	0.82	0.52	- 37%	0.68	0.49	0.53
Na+_in_a	ir ug/m	3									
Period	CDavs	Ns	Np	pc<30%	pc<50%	0bs	Mod	Bias	Rmse	Corr	IOA
YEARLY	-	26	26	(81%)	(92%)	0.60	0.63	6%	0.39	0.85	0.92
YEARDAY	-	26	7572	(43%)	(63%)	0.62	0.68	10%	0.86	0.72	0.84
JANFEB	-	24	24	(75%)	(92%)	0.54	0.50	- 6%	0.47	0.79	0.87
SPRING	-	22	22	(91%)	(95%)	0.67	0.79	18%	0.40	0.89	0.93
SUMMER	-	23	23	(87%)	(91%)	0.60	0.66	9%	0.38	0.86	0.91
AUTUMN	-	23	23	(83%)	(91%)	0.69	0.71	3%	0.50	0.83	0.91