

Norwegian Meteorological Institute met.no MSC-W

> EMEP model: Basic Exercises

Semeena Valiyaveetil Shamsudheen

Model Setup:

Main dir: EMEP.Opensource

NEW FEATURE: 'config_emep.nml' -> contains switches and flags needed for the run and special case simulations.

Subdirectories: code, input, met code contains model code met directory contains meteorology data input directory contains all other input data

runlabel1=Base # short label startdate="2010 01 01" # start date (metdata) enddate="2010 12 31" # end date (metdata)

Exercises.

•Exercise 1:

- Base run. code, meteorology, input data.
- Run for the meteorological year 2010.
- Output is written into the home directory.
- Output files:
 - Base_fullrun.nc \rightarrow Annual file in netCDF format
 - Base_month.nc \rightarrow Monthly file in netCDF format
 - Base_day.nc \rightarrow Daily file in netCDF format
 - Base_hour.nc \rightarrow Hourly file in netCDF format
 - sites_2010.csv → Sites data in ascii
 - sondes_2010.csv \rightarrow sondes data in ascii
 - RunLog.out Log file with run settings info + massbalance check info at the end
 - Timing.out CPU Time details.

Exercise 2:

Choosing a particular domain:

- config_emep.nml: RUNDOMAIN
- Same set of output files

Exercise 3:

Choosing time period

modrun.sh: Choose with 'startdate and enddate'


```
Exercise 4:
```

Writing out 4D concentrations:

My_Derived_ml.f90 Parameter: "D3»

egs., to write out Daily CO concentration to all model level ->

typ_s5i("CO ", "ppb", D3,"AIR_CONCS", SPEC, D)

Exercise 5: Add more species to all vertical levels in the hourly netCDF output file.

> My_Outputs_ml.f90: nhourly_out, nlevels_hourly, FREQ_HOURLY

egs., code to write out hourly concentration of NO2 to all levels :

hr_out = (/ &

,Asc2D("no2_3dppb" ,"Out3D", NO2 & ,ix1,ix2,iy1,iy2,nlevels_hourly,"ppbv",PPBINV 600.0*1.91) /)

Exercise 6:

How to select species in the sites.csv

My_Outputs_ml.f90:

- NSITES_MAX = 99 & ! Max. no surface sites allowed
- FREQ_SITE = 1 & ! Interval (hrs) between outputs
- NADV_SITE = NSPEC_ADV & ! No. advected species (1 up to NSPEC_ADV)
- NSHL_SITE = NSPEC_SHL & ! No. short-lived species
- NXTRA_SITE_MISC = 2 & ! No. Misc. met. params

- and Sondes

- My_Outputs_ml.f90: NADV_SONDE = 2 & & ! No. advected species NXTRA SONDE = 4
 - NSONDES MAX = 99 & ! Max. no sondes allowed
 - NLEVELS_SONDE = 20 & ! No. k-levels (9 => 0--2500 m)
 - FREQ_SONDE = 1 & ! Interval (hrs) between outputs
 - NSHL_SONDE = 3 & & ! No. short-lived species
 - ! No. Misc. met. params

integer, public, parameter, dimension(NADV_SONDE) :: & $SONDE_ADV = (/ IXADV_O3, IXADV_NO2/)$ integer, public, parameter, dimension(NSHL_SONDE) :: & SONDE_SHL = (/ IXSHL_OH, IXSHL_OD, IXSHL_OP /) character(len=10), public, parameter, dimension(NXTRA_SONDE) :: & SONDE_XTRA= (/ "NOy ", "z_mid ", "p_mid ", "th " /)

Exercise 8: Adding more sites to 'sites.csv' and 'sondes.csv' file - Edit sites.dat and sondes.dat files in the input directory egs., sites.dat -> lat lon lev name 78.93 11.88 20 Ny_Alesund Hyytiala 20 61.85 24.28

Exercise 9: Nesting Different MODES: config_emep.nml → MODE = 0 (do nothing)

1->write, 2->read, 3->read and write, 10->write at end of run, 11->read at start, 12->read at start and write at end

Using different Boundary conditions 'ExtrenalBICs_ml.f90' → USE_EXTERNAL_BIC = .true., EXTERNAL_BIC_NAME = "YourBC.nc" Nest_ml.f90 → NHOURSAVE=3

Source Receptor Calculations:

- femis.dat ->

Name7soxnoxcovocnh3pm25pmco2801.01.01.01.01.01.0

 For reducing 20% emissions of SOX from France
Name 7 sox nox co voc nh3 pm25 pmco
8 0 1.0 .80 1.0 1.0 1.0 1.0 1.0 1.0

Notes

- After each run, Output will be written out to the \$HOME Directory.
- If you do not want your files to be overwritten, edit 'runlabel1' in modrun.sh file
- You can compare a 'Base run' with the data on EMEP Opensource Web site.
- If something goes wrong, contact me, I'll forward the tricky questions to Peter or David ;)