

Norwegian Meteorological Institute met.no

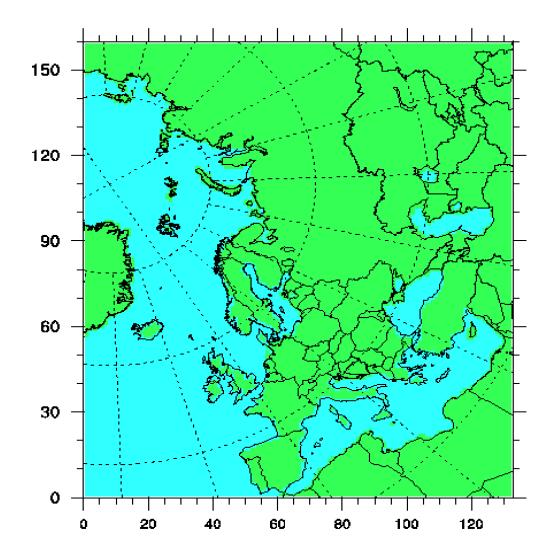
Emissions in the EMEP MSC-W model

Ágnes Nyíri

Standard emission input

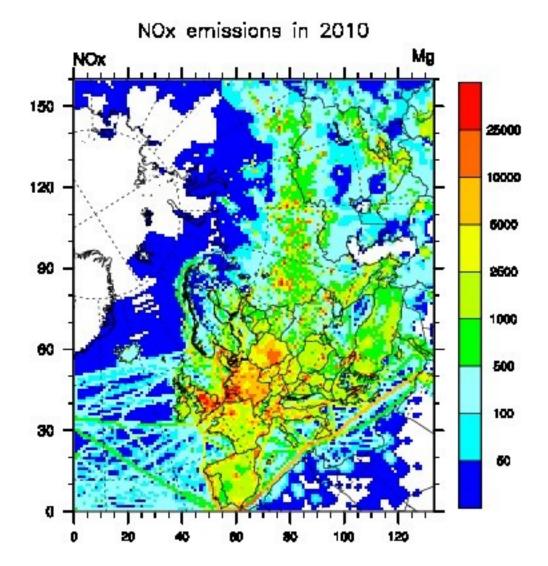
- Gridded annual emissions
 - NOx, SOx, NH3, NMVOC, CO, PMco, PM2.5
 - Input files emislist.POLL
 - Emission input provided for the extended EMEP domain for year 2010
 - 50 x 50 km² polar stereographic (PS) projection, http://www.emep.int/grid/EMEP_domain.pdf
 - 10 anthropogenic SNAP source-sectors
 - ASCII text files with 16 columns:
 EMEP_cc i j emis_high emis_low SNAP1-SNAP11

SNAP source-sectors



SNAP 1	Combustion in energy and transformation industries
SNAP 2	Non-industrial combustion plants
SNAP 3	Combustion in manufacturing industry
SNAP 4	Production processes
SNAP 5	Extraction and distribution of fossil fuels and geothermal energy
SNAP 6	Solvent use and other product use
SNAP 7	Road transport
SNAP 8	Other mobile sources and machinery
SNAP 9	Waste treatment and disposal
SNAP 10	Agriculture
SNAP 11	Other sources and sinks

Extended EMEP domain


Grid indexes used in emission files, counting starts at the lower-left corner of the grid domain.

Example of emission data

Official NOx
 emissions for 2010
 over the extended
 EMEP domain in
 50 x 50 km² PS
 projection

Other resolutions/projections used in the EMEP MSC-W model

- Flexible choice of horizontal resolution and projection
- Polar stereographic (PS) grid examples
 - 50 x 50 km² PS grid (standard EMEP)
 - 10 x 10 km² and 25 x 25 km² PS grids have also been used in EMEP status reports to show effect of grid resolution
 - 150 x 150 ² km PS grid was the standard EMEP grid until 1997

Other resolutions/projections used in the EMEP MSC-W model

- Longitude-latitude (LL) grid examples
 - 0.1° x 0.1° LL and 0.2° x 0.2° LL grids have been used in EMEP status reports to show effect of grid resolution/projection
 - TNO (MACC) grid: 0.125° x 0.0625° LL (TNO7),
 0.25° x 0.125° LL (TNO14), 0.5° x 0.25° LL (TNO28), 1° x 0.5° LL (TNO56)
 - □ 0.25° x 0.25° LL grid in EuroDelta-3 project
 - \circ 0.5° x 0.5° LL and 1.0° x 1.0° global runs

Emission support

- Only standard EMEP emissions are provided with the open source code
- There might be restrictions on distribution of other emissions
- If you need non-standard emissions
 - Specify exactly what you need and what are your plans with the emission data
 - Contact the owner of emissions if restricted data
 - When permission to use the data is granted, we might be able to help with conversion into EMEP model input format

New type of emission input

- Emissions in netCDF format
 - 0.125° x 0.0625° lon-lat data for Europe (MACC),
 can be scaled using femis.dat (some limitations)
 - 0.5° x 0.5° lon-lat data global (ECLIPSE)
 - Emissions are interpolated to correct grid in the model (same grid as meteorological data)
 - Better grid flexibility
 - The new emission system is under testing, but included in the open source model code
 - Restrictions on use of the fine scale emissions

- Main modules to treat standard anthropogenic emissions
 - EmisDef_ml.f90
 - EmisGet_ml.f90
 - Emissions_ml.f90
- Some other emission sources are treated in other modules (e.g. Biogenics_ml, DustProd_ml)
- Resulting in molecules/(cm³·sec) for the different pollutant species, which enters the chemistry

- Vertical distribution (see User's Guide 2.2.5)
 - Default distribution based upon SNAP sectors
 - □ Input file EmisHeights.txt → EmisGet_ml.f90

No.	Sources		Height of Emission Layer (m)							
		0-92	92-184	184-324	324-522	522-781	781-1106			
1	Combustion in energy and transformation industries			15	40	30	15			
2	Non-industrial combustion plants	$100^{(a)}$	$0^{(a)}$							
3	Combustion in manufacturing industry	10	10	15	30	30	5			
4	Production processes	90	10							
5	Extraction and distribution of fossil fuels and geothermal energy	90	10							
6	Solvents and other product use	100								
7	Road transport	100								
8	Other mobile sources and ma- chinery	100								
9	Waste treatment and disposal	10	15	40	35					
10	Agriculture	100								

Notes: (a) Up to version $\text{rv}4\beta$ SNAP-2 was split 90% into the lowest layer, then 10% in the next lowest.

- Temporal distribution (see User's Guide 2.2.4)
 - Monthly and day-of-week time factors specific to pollutant, country and SNAP source-sector
 - Input files MonthlyFac.POLL and DailyFac.POLL
 - Degree-day factors for SNAP2 (function of daily temperatures in grid cells) (User's Guide 2.1.5)
 - Input file DegreeDayFactors.nc
 - Hourly time factors specific to day-of-week and SNAP source-sector
 - Input file HOURLY_FACS

- Chemical speciation (see User's Guide 2.2.7)
 - Some emission files include a group of compounds (e.g. NOx, SOx, NMVOC, PMs)
 - Specified normally for each SNAP source-sector
 - Input files emissplit.defaults.POLL describe the default splits
 - More detailed or different specification (e.g. for particular countries or SNAP sectors) can also be given in optional files
 - Input files emissplit.specials.POLL describe the special splits

- VOC speciation (see User's Guide 2.2.7)
 - Specified for each SNAP source-sector
 - "Lumped molecule" approach
 - Input file emissplit.defaults.voc describes the default split
 - Input file emissplit.specials.voc is required when forest fires are included

SNAP	C2H6	NC4H10	C2H4	C3H6	C5H8	OXYL	СНЗОН	С2Н5ОН	НСНО	СН3СНО	MEK	GLYOX	MGLYOX	UNREAC
1	12.559	14.836	2.406	4.376	0.000	9.479	0.000	0.000	55.691	0.034	0.620	0.000	0.000	0.000
2	12.589	39.790	8.174	10.767	0.000	18.632	0.000	3.912	5.586	0.207	0.089	0.000	0.000	0.255
3	4.996	35.610	9.044	2.089	0.000	18.323	0.561	3.034	24.134	0.059	1.347	0.000	0.000	0.805
4	2.652	34.519	5.458	4.257	0.142	13.380	1.176	31.414	0.077	0.978	1.608	0.000	0.000	4.337
5	17.842	79.895	0.018	1.569	0.008	0.505	0.000	0.000	0.078	0.000	0.000	0.000	0.000	0.085
6	0.444	44.052	0.244	0.678	0.008	17.904	6.101	16.416	0.011	0.000	9.965	0.000	0.000	4.176
7	4.832	36.698	6.796	10.896	0.000	35.051	0.000	0.000	2.700	2.606	0.421	0.000	0.000	0.000
8	3.775	47.416	6.636	10.608	0.000	24.676	0.000	0.000	3.115	3.261	0.235	0.146	0.117	0.014
9	25.718	36.778	5.237	1.830	1.153	7.881	0.427	2.439	16.060	0.000	0.093	0.000	0.000	2.383
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	100.000

Other emission sources

- Aircraft (optional, see User's Guide 2.1.8)
 - NOx emissions from aircraft from QUANTIFY
 - Calculated on annual basis and distributed to monthly files according to seasonal variation
 - Input file AircraftEmis_FL.nc (not provided)
 - Spatial resolution 1° x 1°x 610m, interpolated to correct grid during model run
- Road dust (optional, see User's Guide 2.1.7)
 - PM emissions from road traffic and road map
 - Input file RoadMap.nc (Europe, provided)
 - Input file AVG_SMI_2005_2010.nc (global, provided)

- Natural SO2 (see User's Guide 2.2.1)
 - Monthly gridded emission files: natso2MM.dat
 - DMS (dimethyl sulfide) emissions from sea
- Forest fires (optional, see User's Guide 2.1.10)
 - Global daily emissions stored at 0.2°x0.2° resolution from "Fire Inventory from NCAR" (FINNv1) from year 2005
 - For earlier years 8-daily fire emissions from "Global Forest Emission Database" (GFED-2)
 - Pollutants included: SO2, CO, NOx, NMHC, PM2.5,
 PM10, OC and BC
 - Input file ForestFire_Emis_YYYY.nc (not provided)

- Biogenic NMVOC (see User's Guide 2.1.3)
 - Foliar emissions of isoprene (and monoterpenes) are calculated in the model for each grid cell and model time-step (function of temperature, solar radiation, land-cover)
 - BVOC emission potentials for four forest types are given in input file EMEP_EuroBVOC.nc
 - Default emission potentials for other land-cover types are included in Inputs_LandDefs.csv
 - Land-cover input files Landuse_PS_5km_LC.nc (EMEP) and LanduseGLC.nc (global)

- Soil NO emissions (see User's Guide 2.1.6)
 - Emissions of NO from soil are specified as function of N-deposition and temperature
 - Depends on ecosystems, thus detailed landcover data is required
 - Pre-calculated N-depositions in input file annualNdep.nc
 - Land-cover input files Landuse_PS_5km_LC.nc
 (EMEP) and LanduseGLC.nc (global)

- Lightning (see User's Guide 2.2.8)
 - NOx emissions from lightning are included as monthly averages at 5.65° x 5.65° resolution
 - Input files lightningMM.dat
- Volcanoes (see User's Guide 2.2.2)
 - SO2 emissions from passive degassing of volcanoes are included for Etna and Stromboli
 - Input file VolcanoesLL.dat contain location, height and emission in kt/yr
 - To include SO2 and PM emissions from the 2010 eruption of Eyjafjallajökul volcanoes.csv and eruptions.csv are needed

- Sea salt and dust (Svetlana's talk on 25 April)
 - The model calculates sea salt aerosols with diameters up to 10 µm
 - The model include windblown dust within the model domain and dust produced outside, but transported to the model grid (e.g. Saharan dust through boundary conditions)

More information about emissions

- Section 6 in "The EMEP MSC-W chemical transport model technical description." Atmos. Chem.
 Phys. 12, 7825-7865, 2012. Simpson et al.
- http://www.atmos-chem-phys.net/12/7825/2012/
- The paper has been sent to course participants in file EMEP_MSCW_Documentation.pdf