

CityZen Science Policy Brief: Particulate Matter (PM₁₀)

Particulate matter (PM) is comprised of solid particles and liquid droplets in the atmosphere, originating from natural and man -made sources. Particulate matter is a concern for human health, visibility, and climate forcing.

Particulate matter with a diameter smaller than 10 μ m (PM₁₀) has been monitored and regulated for a number of years. The EU standard for PM₁₀ is:

- 40 µg m⁻³ annual average,
- 50 µg m⁻³ 24 hour average, with no more than 35 exceedances permitted per year.

Policy Implications

- Based on PM₁₀ monitoring station observations, PM₁₀ concentrations in Germany, UK, and BeNeLux have been decreasing (1998-2007) and is attributed to successful air quality regulation.
- A lack of monitoring sites results in significant gaps in data and information, limiting effective model evaluation and thereby predictive capabilities. Appropriate combination of aerosol remote sensing from space with ground based measurements, whilst challenging, potentially resolves the problem.
- As PM_{2.5} is a more relevant metric for the protection

During the past decade, daily PM₁₀ exceedances have continued to be a problem in a number of European cities, including Paris and Bruxelles.

At urban air quality monitoring sites in Athens, PM_{10} exceedances have fallen from approximately 60% of days in a year a decade ago to about 40% currently.

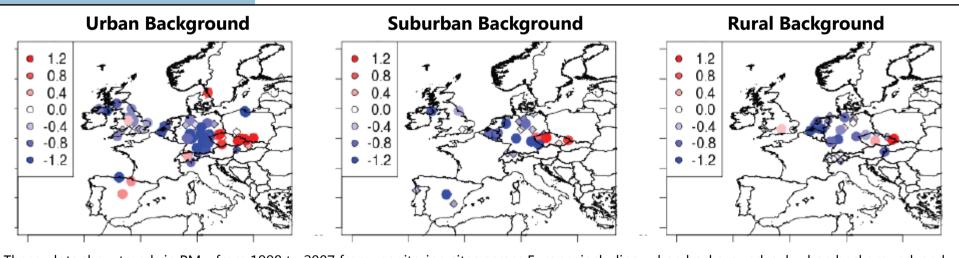
There is a strong regionality in the factors controlling PM_{10} levels throughout Europe, with a much larger natural (e.g., desert dust, sea salt, forest fires) component in the Eastern

Mediterranean region.

Despite strong natural influence in some locations, exceedances in the urban areas are mainly attributed to local anthropogenic emission sources and the fine (PM_{2.5}) contribution to PM₁₀.

Natural climate variability has a strong influence on PM levels, and precipitation specifically is important driver. The an influence meteorological of variability and especially the scarcity availability, in data makes trends in PM difficult to quantify.

of human health, long-term monitoring of PM_{2.5} should be increased, as modelling/prediction capabilities depend on observations for validation.


http://cityzen-project.eu

In a warming climate:

- areas of southern Europe, North Africa and the eastern Mediterranean become more arid, resulting in an increase in PM levels,
- the increase in PM and related hazards from sporadic events, such as those from forest fires become more probable and prominent,
- increasing wind leads to increases in sea salt aerosol and impact on nitrate partitioning,
- increasing summer smog will lead to greater exceedances in urban areas.

Trends in PM₁₀

Long-term (\geq 10 years) PM₁₀ monitoring data shows that more than 80% of European monitoring stations exhibit a significant decreasing trend over the decade (1998-2007), which is attributed to successful air quality regulations. However, in some areas of Northern Germany and the UK, the decreasing trend was observed to lessen and stagnate towards the end of the decade.

These plots show trends in PM₁₀ from 1998 to 2007 from monitoring sites across Europe, including urban background, suburban background, and rural background locations. Red dots indicate increasing trends, blue dots indicate decreasing trends, with the larger trends having darker colors. Trends are in $\mu g m^{-3} yr^{-1}$.

For further information contact: **Michael Gauss** michael.gauss@met.no Trends in areas of Spain and the Czech Republic show increasing concentrations in PM₁₀.

All of these trends were similar at urban, suburban, and rural monitoring sites.

A modelling inter-comparison study found that PM₁₀ trends were quite well captured, supporting model utility for future projections of air quality, although validation was not as rigorous as desirable owing to the relative lack of long term measurements and their sparseness.

